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I. Introduction 

 Geometric Function Theory interesting with the relation between the properties of functions   

and geometric properties of the image of unite disc under the function . A complex valued 

function  zf  is univalent if it satisfies the condition 

      wzwzwfzf ,, ₵                                                  (1) 

On another hand, we say that a complex-valued function  zf  is analytic if you can 

differentiate it infinitely many times and it can always be represented as a Taylor 

series as follows: 
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k
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k Nkazazzf  ,                                           (2) 

and normalized by    00 f  and   10 f . 

Let T  denote the class of functions  zf  defined by (2) are analytic and univalent in the 

open unite disc  1:  zzU . 

 A function    Tzf   is called stralike function of order α (see [15] )  if  zf  satisfies the 

following condition 
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 Note that   ** 0 SS   is the class of starlike functions ( see [4]) .  

In 1975  Ruscheweyh [14] defined the operator  zfDn  by 
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We observe that    zfzfD 0     and       zfzzfD 1 . 

From equation (4) after simple calculation, we can write Ruscheweyh derivative by 
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In 2001 Hossen [5] use the Ruscheweyh derivative  zfDn  to define the class  

nR  which 

consists of all function   Tzf    satisfies the condition    
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By specializing the parameters n  and  , in the definition of the class can be reduced to 

classes studied pervious by different researchers: 

i. Put 0n , we get        TR0 ,    studied by Silverman [15]; 

ii. Put  0 ,   we get     nn RR 0 ,        studied by Owa [13]; 

 

To prove the main result, we need to recall here the definition of fractional calculus which depends 

on gamma function so; we state the definition of gamma function (see [1]) given by 

  tdetm tm 


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
0

1  .                                                   (8) 

the properties of gamma function and values (see for example  [8]). 

 

Nowadays, fractional calculus is a rich area of research in Mathematics, Physics, Chemistry 

and Engineering (see for example [7], [9] and [10]. There are many definition of fractional calculus 

(fractional integral and fractional derivative) studied by different researches (for an overview see  

[3], [6], [11] and [16] ). Now, we recall here the definition given by Owa [12]. 

 

Definition. 1.1. The fractional integral of order λ is defined for a function  zf  by 
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where 0 ,  zf  is analytic function in a simple-connected region of the z-plane containing the 

origin and the multiplicity of    1



z  is removed by requiring  zlog  to be real when 

  0z . 
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Definition1.2. The fractional derivative of order λ is defined for a function  zf  by 

 
 

 

 






 

 d
z

f

dz

d
zfD

z

z 



0

1

1
,                                                       (10) 

where 10   ,  zf  is constrained and the multiplicity of   



z is removed as in Definition 1.1. 

From Definitions 1.2, it is easy to see that 
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Definition1.3. Under the hypotheses of Definition 1.2, the fractional derivative of order 

n  is defined for a function  zf  by 

    zf
dz

d
zfD

n

n
n

z 
,                                        (12) 

where 10    and 0Nn . 

The problem of coefficient estimates is one of interesting problems which was studied by 

researchers for certain classes in the open unit disc. Closely related to this problem using the results 

of  Hossen  [5] to determine application of fractional calculus to functions belong to the class  

nR  

details with some application of computers software . 

II. METHODOLOGY 

Using coefficient estimates for the class  

nR  which studied previously by Hossen [5] in 

addition to applying the method used earlier by Cho and Aouf [3] to obtain distortion inequalities 

associated with the fractional calculus for the functions     nRzf . 

III. MAIN RESULTS 

In order to prove our results, we need the following Lemma due to Hossen  [5] : 

 

Lemma 3.1: Let the function  zf defined by (2). Then     nRzf  if and only if 
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The result is sharp for the function 
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Now, we study distortion inequalities associated with the fractional derivative of order λ for 

the function     nRzf . 

Theorem 3.1.  Let the function  zf  given by (2) be in the class   

nR  , then, we have 
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and 
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for  0,10,0 Nn   and Uz . The result is sharp for the function  zf defined by 
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     Proof.  Using the technique used ealier by Cho and Aouf [3]. 

Let  

     zfDzzF z

  2
   
 

k

k

k

za
k

k
z 



 




2 1

21




   ,

2

k

k

k

zakz 




                                    (18) 

where 

  
   
 

 ,2,
1

21





 k

k

k
k




                                         (19) 

Then 

     .
2

2
20





 k                                                         (20) 

In view of Lemma 3.1, we have 
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Therefore by using (20) and (22) in Equation (18), we get 
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Thus, the proof of Theorem 3.1 is completed. 

 

          Corollary  3.1. Under the hypotheses of Theorem 3.1,   zfDz

  is included in a disc with its 

center at the origin and radius 
1r  given by  
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          Put 5.0 ,
4

1  and 0n  in Corollary 3.1 we get the following corollary 

 

          Corollary 3.2. under the hypotheses of Theorem 3.1,  zfDz
2
1

 is included in a disc with its 

center at the origin and radius 2r  given by 
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Put 
2
1 in Theorem 3.1, we get the following corollary 

 

Corollary 3.3. Let the function  zf  given by (2) be in the class  

nR , then we have 
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for 0,10 Nn  and Uz . The result is sharp for the function 
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Put 0n in Corollary 3.3, we have the following corollary 

 

Corollary  3.4. Let the function  zf  defined by (2) be in the class  T , then we have 
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for 10   and Uz . The result is sharp for the function 
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 Put 0 in Corollary 3.4, we have the following corollary 

 

 Corollary 3.5. Let the function  zf  defined by (2) be in the class 
T , then we have 
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The result is sharp for the function  
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Now, we Graph the sharp function given by Equation (35) by Complex Tool Program  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 the image of unit disc under the function  
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Theorem 3.2. Let the function  zf defined by (2) be in the class  

nR , then we have 
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for 10    and .Uz  The result is sharp for the function  zf defined by 
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 Proof. Let 

     zfDzzG z

 2
   
 

k

k

k

za
k

k
z 



 




2 2

21




  ,

2

k

k

k

zakkz 




                                 (39) 

where 

 
   
 

 ,2,
2

2





 k

k

k
k




                                               (40) 

then 



 H. M. Hossen  et. al. / International Journal of New Technologies in Science and Engineering 
Vol. 4, Issue. 12, 2017, ISSN 2349-0780 

 

32                                                                                                                www.ijntse.c omAvailable online @                                                           
 
 

    .
2

1
20


 k                                                         (41) 

In view of Lemma 3.1,  
















22 1

1

k

k

k

k a
n

ak 
  

  12

12






n


.                                                           (42) 

On another hand  by using (41) and (42) , we get 
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The proof of Theorem 3.2 is complete.  

 

            Corollary 3.6. Under the hypotheses of Theorem 3.2,  zfDz
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Put 
2

1
  in Theorem 3.2, we get the following corollary 

 

Corollary 3.7. Let the function  zf  defined by (2) be in the class  

nR , then 
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for Uz .  The result  is sharp for the function  
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Put 0  in Theorem 3.2, we get the following corollary   

 

Corollary 3.8.  Let the function  zf  defined by  (2) be in the class  
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for 10  and Uz . The result is sharp for the function  
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 Remark 3.1.  The result obtained in Corollary 3.8 give the same result of Hossen [5]. 

 Put 0 in Corollary 3.9, we get the following corollary 

 

 Corollary 3.10. Let the function  zf  defined by (2) be in the class 

nR , then 
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The result is sharp for the function 
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 Put 0n  in Corollary 3.10, we get the following corollary 

 

 Corollary 3.11. Let the function  zf  defined by (2), be in the class 
T , then 
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for Uz . The result is sharp for the function 
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Graph the sharp function given by equation (57) by Complex Tool Program by figure 3.2. 

 

 

 

 

 

 

 

 

figure 3.2 the image of unit disc under the function   2

2

1
zzzf   

Put 0n in Theorem 3.2, we get the following corollary  

 

Corollary 3.12.  Let the functions  zf  defined by (2) be in the class  S , then 
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for 10   and Uz . The result is sharp for the function 
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IV. CONCLUSION 

This work is generalization for well-known distortion inequality to certain classes of 

univalent functions  which are studied by different authors. In addition, we get number of corollaries 

by fractional order.  
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